2 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
Typology operator: and / or
Language operator: and / or
Date operator: and / or
Rights operator: and / or
2023 Journal article Open Access OPEN
Security-informed safety analysis of autonomous transport systems considering AI-powered cyberattacks and protection
Illiashenko O., Kharchenko V., Babeshko I., Fesenko H., Di Giandomenico F.
The entropy-oriented approach called security- or cybersecurity-informed safety (SIS or CSIS, respectively) is discussed and developed in order to analyse and evaluate the safety and dependability of autonomous transport systems (ATSs) such as unmanned aerial vehicles (UAVs), unmanned maritime vehicles (UMVs), and satellites. This approach allows for extending and integrating the known techniques FMECA (Failure Modes, Effects, and Criticality Analysis) and IMECA (Intrusion MECA), as well as developing the new SISMECA (SIS-based Intrusion Modes, Effects, and Criticality Analysis) technique. The ontology model and templates for SISMECA implementation are suggested. The methodology of safety assessment is based on (i) the application and enhancement of SISMECA considering the particularities of various ATSs and roles of actors (regulators, developers, operators, customers); (ii) the development of a set of scenarios describing the operation of ATS in conditions of cyberattacks and physical influences; (iii) AI contribution to system protection for the analysed domains; (iv) scenario-based development and analysis of user stories related to different cyber-attacks, as well as ways to protect ATSs from them via AI means/platforms; (v) profiling of AI platform requirements by use of characteristics based on AI quality model, risk-based assessment of cyberattack criticality, and efficiency of countermeasures which actors can implement. Examples of the application of SISMECA assessment are presented and discussed.Source: Entropy (Basel, Online) 25 (2023). doi:10.3390/e25081123
DOI: 10.3390/e25081123
Metrics:


See at: ISTI Repository Open Access | www.mdpi.com Open Access | CNR ExploRA


2023 Journal article Open Access OPEN
Flying sensor and edge network-based advanced air mobility systems: reliability analysis and applications for urban monitoring
Fesenko H., Illiashenko O., Kharchenko V., Kliushnikov I., Morozova O., Sachenko A., Skorobohatko S.
Typical structures of monitoring systems (MSs) that are used in urban complex objects (UCOs) (such as large industrial facilities, power facilities, and others) during the post-accident period are combined with the technologies of flying sensor networks (FSNets) and flying edge networks (FENets) (FSNets and FENets); cloud/fog computing and artificial intelligence are also developed. An FSNets and FENets-based MS, composed of one of the Advanced Air Mobility (AAM) systems classes, which comprise main and virtual crisis centers, fleets of flying sensors, edge nodes, and a ground control station, is presented and discussed. Reliability and survivability models of the MS for the UCOs, considering various operation conditions and options of redundancy, are developed and explored. A tool to support the research on MS reliability, survivability, and the choice of parameters is developed and described. Crucially, this paper enhances the technique for assessing systems using the multi-parametrical deterioration of characteristics as a class of multi-state systems. Problems that may arise when using FSNets/FENet-based AAM systems are discussed. The main research results comprise a structural basis, a set of models, and a tool for calculating the reliability and survivability of FSNets/FENet-based AAM systems, with various options for distributing the processing and control resources between components, their failure rates, and degradation scenarios.Source: Drones 7 (2023). doi:10.3390/drones7070409
DOI: 10.3390/drones7070409
Metrics:


See at: ISTI Repository Open Access | www.mdpi.com Open Access | CNR ExploRA